منابع مشابه
Interlimb coordination during locomotion: what can be adapted and stored?
Interlimb coordination is critically important during bipedal locomotion and often must be adapted to account for varying environmental circumstances. Here we studied adaptation of human interlimb coordination using a split-belt treadmill, where the legs can be made to move at different speeds. Human adults, infants, and spinal cats can alter walking patterns on a split-belt treadmill by prolon...
متن کاملInterlimb coordination in body-weight supported locomotion: A pilot study.
Locomotion involves complex neural networks responsible for automatic and volitional actions. During locomotion, motor strategies can rapidly compensate for any obstruction or perturbation that could interfere with forward progression. In this pilot study, we examined the contribution of interlimb pathways for evoking muscle activation patterns in the contralateral limb when a unilateral pertur...
متن کاملPropriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion.
Soon after birth, freely moving quadrupeds can express locomotor activity with coordinated forelimb and hindlimb movements. To investigate the neural mechanisms underlying this coordination, we used an isolated spinal cord preparation from neonatal rats. Under bath-applied 5-HT, N-methyl-d,l-aspartate (NMA), and dopamine (DA), the isolated cord generates fictive locomotion in which homolateral ...
متن کاملEarth-referenced handrail contact facilitates interlimb cutaneous reflexes during locomotion.
The purpose of this study was to investigate whether the gating of interlimb cutaneous reflexes is altered by holding an earth-referenced handrail during locomotion. In the first experiment, subjects performed locomotor tasks of varying difficulty (level walking, incline walking, and stair climbing) while lightly holding an earth-referenced rail. In the second experiment, the extent of rail con...
متن کاملNeural Mechanisms Influencing Interlimb Coordination during Locomotion in Humans: Presynaptic Modulation of Forearm H-Reflexes during Leg Cycling
Presynaptic inhibition of transmission between Ia afferent terminals and alpha motoneurons (Ia PSI) is a major control mechanism associated with soleus H-reflex modulation during human locomotion. Rhythmic arm cycling suppresses soleus H-reflex amplitude by increasing segmental Ia PSI. There is a reciprocal organization in the human nervous system such that arm cycling modulates H-reflexes in l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Zoologist
سال: 1989
ISSN: 0003-1569
DOI: 10.1093/icb/29.1.255